
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 

ACOUSTIC TRANSIENT TDOA ESTIMATION AND 
DISCRIMINATION 

by 

Granger Hart Bennett 

September 2000 

Thesis Advisors: Charles W. Therrien 
Murali Tummala 
Kevin B. Smith 

Approved for public release; distribution is unlimited 

20001129 055 
y 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching 
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this 
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, 
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management 
and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2.   REPORT DATE 
September 2000 

3. REPORT TYPE AND DATES COVERED 
Master's Thesis 

4. TITLE AND SUBTITLE:    Acoustic Transient TDOA Estimation and Discrimination 

6. AUTHOR(S)    Bennett, Granger Hart 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Assault and Special Mission Programs PMA-264 
47123 Buse RD IPT Ste 148 

Patuxent River, MD 20670-1547 

5. FUNDING NUMBERS 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of 
Defense or the U.S. Government. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited 
12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This thesis examines acoustic transient discrimination and Time Difference Of Arrival (TDOA) 
estimation for the purposes of estimating the position of a submarine in a sonabuoy field. Transient 
discrimination, for this thesis, is the process of telling different transients apart. Two algorithms are 
evaluated. One method is based on higher order statistics while the other is based on signal subspace 
techniques. Extensive simulations using synthetic transients were conducted to establish the performance of 
each algorithm in terms of discrimination and TDOA estimation. It was found that the bispectral algorithm 
gave better TDOA estimation at low SNRs while the subspace algorithm gave better TDOA estimation at 
high SNRs. For discrimination, it was found that the subspace algorithm gave consistant false alarm rates at 
all SNRs while the false alarm rate for the bispectral algorithm grew with increasing SNR. 

14. SUBJECT TERMS 

Transient, TDOA, Discrimination, bispectrum, subspace 

17. SECURITY 
CLASSIFICATION OF 
REPORT 
Unclassified 

18. SECURITY CLASSIFICATION OF 
THIS PAGE 
Unclassified 

NSN 7540-01-280-5500 

19. SECURITY CLASSIFICATION OF 
ABSTRACT 
Unclassified 

15. NUMBER OF 
PAGES 

80 

16. PRICE CODE 

20. LIMITATION OF 
ABSTRACT 

Standard Form 298 (Rev.2-89) 
Prescribed by ANSI Std. 239-18 





Approved for public release; distribution is unlimited 

ACOUSTIC TRANSIENT TDOA ESTIMATION AND 
DISCRIMINATION 

Granger Hart Bennett 
Lieutenant Commander, South African Navy 

B.Eng, University of Stellenbosch South Africa, 1991 

Submitted in partial fulfillment of the 
requirements for the degrees of 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 
MASTER OF SCIENCE IN ENGINEERING ACOUSTICS 

from the 

NAVAL POSTGRADUATE SCHOOL 

September 2000 

Author: 

Approved by: 

( ,L*jL> P'Thu^ \ 

Charles W. Therrien, Thesis Advisor 

Murrali Tummala, Thesis Advisor 

-7<-~^ ,/?^^\ 
Kevin B. Smith, Thesis Advisor and Chairman 
^Engineering Acoustics Academic Commitee 

// 

-U KN>^- 
Jersey B. Knorr, Chairman 

Department of Electrical and Computer Engineering 

in 



IV 



ABSTRACT 

This thesis examines acoustic transient discrimination and Time Difference Of 

Arrival (TDOA) estimation for the purposes of estimating the position of a submarine in 

a sonabuoy field. Transient discrimination, for this thesis, is the process of telling 

different transients apart. Two algorithms are evaluated. One method is based on higher 

order statistics while the other is based on signal subspace techniques. Extensive 

simulations using synthetic transients were conducted to establish the performance of 

each algorithm in terms of discrimination and TDOA estimation. It was found that the 

bispectral algorithm gave better TDOA estimation at low SNRs while the subspace 

algorithm gave better TDOA estimation at high SNRs. For discrimination, it was found 

that the subspace algorithm gave consistant false alarm rates at all SNRs while the false 

alarm rate for the bispectral algorithm grew with increasing SNR. 
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EXECUTIVE SUMMARY 

In this thesis we have developed and compared two algorithms, namely the 

bispectrum and subspace linear phase detectors. These algorithms were developed for 

the purposes of transient discrimination and Time-Difference-Of-Arrival (TDOA) 

estimation. They are to be used as part of a transient tool suite to aid in the estimation of 

ä submarine's position. Two performance measures were used to evaluate the 

algorithms, namely the probability of correct TDOA (PT) and the probability of correct 

discrimination (PDD- 

In general, it can be said that for TDOA, the bispectral linear phase detector gave 

better results at low SNRs while the subspace linear phase detector worked better at the 

higher SNRs. 

For discrimination, it was found that the bispectral discriminator gave higher PDi 

than the subspace discriminator. However, the probability of false discrimination (Pfa) of 

the bispectral discriminator increased at higher SNRs while the subspace discriminator 

gave a constant Pfa for all SNRs evaluated. For discrimination, the advantage of having a 

constant Pfa is desirable. Therefore the subspace discriminator is the best option even 

although it produced lower PDj than the bispectral discriminator. It was also found that 

there are design trade-offs between processing speed and performance that need to be 

made. For the bispectral linear phase detector, this trade-off is in terms of threshold gain; 

for the subspace linear phase detector, this trade-off is in terms of correlation matrix size. 
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I.   INTRODUCTION 

The work of this thesis forms part of the ongoing effort to automate the detection, 

discrimination and Time-Difference-Of-Arrival (TDOA) estimation of transient signals. 

At present, transient signals are located and processed manually, making it a very time 

consuming procedure. It is therefore more desirable to have an automated system that 

can deliver the same or better results than the present manual approach. 

For this thesis, it is assumed that the detection of the transient has already taken 

place; therefore, the objective of the thesis is to look at discrimination and TDOA 

estimation only. Two algorithms, namely the bispectral linear phase detector and the 

subspace linear phase detector, are developed for this purpose. 

A.        THE OPERATIONAL MISSION 

A typical mission considered for this thesis starts off with an anti-submarine 

warfare (ASW) aircraft laving a sonabuoy field in the vicinity or on the predicted path of 

a submarine. Usually each sonabuoy in the field consists of calibrated omni-directional 

passive acoustic sensors. The ASW aircraft collects acoustic data on a target submarine 

as it passes through the sonabuoy field. 

Figure 1 shows a typical V-shaped sonabuoy field that can be used in this type of 

mission. When this shape is used, the target must pass through the apex of the V of the 

field (as close as possible) in order to obtain the most accurate results. The data received 

at the sonabuoys is transmitted to the aircraft, which in turn records the data on tape for 

mission post processing. 



Figure 1.        Typical Sonabuoy Field. 

The data collected on the tapes is processed at an onshore location in order to estimate the 

acoustic Sound Pressure Levels (SPL) of tonals, broadband signals and transients that are 

emitted from the submarine. 

To obtain precise SPL of a submarine, an accurate track is required so that the 

pressure levels received at the sonabuoys can be projected back to estimate the pressure 

levels at the target. For best results, the position of each sonabuoy must be known, the 

target must be on a course that passes through the middle of the field, and an accurate 

estimation of TDOA of acoustic signals must be made. 

B. DATA PROCESSING 

The data collected from the sonabuoys and stored on the tape is processed by first 

generating a baseband sonogram. A sonogram is a frequency versus time plot of the 

acoustic pressure levels at a sonabuoy. From these sonograms an analyst can identify and 

highlight contact events of interest, which may include signals, such as narrowband 

tonals and transients. The events identified are then processed to obtain an estimate of 

the target's track. Once the best estimate of the target track has been made, the analyst 

can conduct SPL analysis on all types of previously identified contact signals. The final 

desired results are the SPL signature characteristics for a given target with respect to 

aspect angle. 



At present, transient analysis is a manually intensive operation. Typically, the 

analyst marks transient events of interest from the sonogram display of a sonabuoy and 

then searches the sonograms of the other sonabuoys for the same transient. This can be a 

very time consuming process since in a single mission there can be hundreds of transients 

within a single sonogram. These must be matched up to those on the sonograms from the 

other sonabuoys in the sonabuoy field. 

C. THESIS GOAL 

The goal of this thesis is to develop and evaluate two algorithms that can be used 

for transient discrimination and Time-Difference-Of-Arrival (TDOA) estimation. The 

two algorithms are the bispectral linear phase detector and the subspace linear phase 

detector. 

D. THESIS OUTLINE 

The remainder of this thesis is organized as follows. Chapter II discusses 

transients and transient processing and introduces the problems of interest, namely 

TDOA estimation and transient discrimination. Chapter m presents the relevant signal 

models and the analysis of the measured signals in terms of second- and third-order 

moments. This chapter details the formulation of the bispectral linear phase detector and 

discriminator. Chapter IV discusses signal subspace techniques and their application to 

the problem of TDOA estimation and transient discrimination. The outcome of this 

chapter is the formulation of the subspace TDOA estimator and discriminator. Chapter V 

examines the results achieved by both the bispectral and subspace TDOA estimators and 

discriminators. Extensive simulations are conducted using synthetic transients to produce 

performance curves and to study the utility of each technique in discrimination and 

TDOA of transients. Chapter VI provides conclusions and recommendations for future 

work based on the results presented. Appendix A and Appendix B show the 

discrimination results for the different combinations of signals not shown in Chapter V. 
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II.   TRANSIENT PROCESSING 

A.        TRANSIENT SIGNALS 

Transients of interest here are short duration wideband acoustic signals. 

Accordingly transients can be of varying shapes and lengths, lasting anywhere from a few 

microseconds to a couple of seconds. Typical examples of these signals are a wrench 

falling on a metal deck or the sounds of a biological life form, such as a whale. Due to 

the diversity of these signals, there is limited a priori information that can be used to aid 

in their detection. When transients are imbedded in noise, their detection becomes very 

difficult because the energy in the noise frequently dominates the energy in the transient 

over the interval of interest. Nevertheless, in conjunction with other measurements or by 

themselves, transients can be used to estimate the track of the target submarine by 

estimating the TDOA of a transient between two sonabuoys. 

Tracking of a submarine using transients requires transient detection, 

discrimination and TDOA estimation. Prior to discrimination, a transient must be 

detected in a noisy background on the sonagram of a single sonabuoy. This thesis does 

not address the transient detection problem and therefore assumes that a transient has 

been detected on the sonogram of a sonabuoy. 

After the transient has been detected, the same transient must be found on the 

sonograms of the other sonabuoys in the sonabuoy field. This is difficult since the 

detected transient may not exist on all sonabuoys within the field. That is, the sonograms 

of the other sonabuoys could contain only noise or even a different transient in the 

window of interest. The first case (i.e., where the sonogram of the other sonabuoys 

contain only noise) is a common scenario. This happens because transients can be very 

localized and thus do not appear on the sonograms of each sonabuoy. The second case 

(i.e., where a different transient exists on the sonogram of the second sonabuoy) is also 

common due to the complex environment of the mission, where multiple transients from 

different sources can exist on the data records of the other sonabuoys in the field. It is 

therefore important to discriminate between different transients and to know if there is no 

transient present.   If the transients arriving at two or more different sonabuoys are the 



same, then TDOA estimates can be used for target localization. In the following we first 

discuss TDOA estimation and then transient discrimination. 

B.        TIME DIFFERENCE OF ARRIVAL (TDOA) ESTIMATION 

TDOA estimation is by no means simple and therefore many authors have written 

about it [Ref 1]. It is, however, the primary means of determining range to the target in 

passive detection, since TDOA information from multiple sonabuoys and the geometry of 

the sonabuoy field can be used to determine the position of the submarine at any 

particular instance in time. For any given value of TDOA between two sonabuoys, the 

locus of possible target positions is a hyperbolic curve. If more than one curve can be 

drawn, i.e., if TDOA values between three or more sonabuoys can be calculated, the 

intersection of the curves determines the position of the target. 

Consider a simple two-buoy model as shown in Figure 2. The sonabuoys are 

symmetrically positioned about the origin on the x-axis as shown in Figure 2, with the 

target located at T. 

yf      -T(x,y) 

Buoy 2 (-x0,0) 

x 

Buoy 1 (xo,0) 

Figure 2.        Two Symmetrically Positioned Sonabuoys. 

For this geometry the time delay z between sonabuoy 1 and sonabuoy 2 is given 

by 

T = tl-t2=- 
D,     D. 

(T-C)2 = (V(X0 -X)2 + V2 - V(X0 +*)2 + V2)2 

(2.1) 



where c is the speed of sound, Dh and Dh are the distances between the target and 

sonabuoy 1 and sonabuoy 2, respectively. After some algebraic manipulation1 of Eq. 2.1, 

the following expression is obtained [Ref 1]: 

a2    b2 (2.2) 

where 

a = 
T.C 

b = 
2x, \2 

Equation 2.2 describes a hyperbola, and a set of hyperbolas can be drawn for different 

TDOA's between sonabuoy 1 and 2 as shown in Figure 3. 

Figure 3.        Hyperbolic curves for TDOA between two symmetrically positioned 

sonabuoys. Sonabuoy positions are indicated by the dots. 

C.        TRANSIENT DISCRIMINATION 

The objective of discrimination between transients is to be able to tell different 

transients apart. This is different from transient classification or transient 

characterization, which attempts to identify the source of the transient and seeks to group 

similar transients together. 

To obtain a hyperbolic expression, Eq 2.1 must be squared, and all the cross terms must be left on the 
right hand side and all other terms on the left hand side. Both sides must now be squared again with like 
terms collected. 



Discrimination is difficult since it relies on detecting differences between the two 

received signals. These differences can be either in magnitude or phase or both. The 

problem is further complicated by the presence of noise and the fact that (due to 

differences in propagation path characteristics) the same transient arriving at two 

different locations may not look and sound the same. Achieving good discrimination at 

low SNR values is a challenging task. 

Figure 4 shows some typical cases in which transient discrimination has to take 

place. The cases shown in this figure are a localized transient such as an expanding 

bubble on a sonabuoy, a directional transient that is emitted from the hull of the 

submarine and is only received at some of the sonabuoys in the sonabuoy field, and an 

omnidirectional transient that is received at all sonabuoys in the field. 

/"      ~\^_—Local Transient 

o 

o 

Omni-Directional 
Transient 

o 

o Directional Transient 

Figure 4.        Discrimination Cases. 

Considering these cases, the TDOA cannot be estimated for all combinations of 

two sonabuoys in the field. Further, if a transient arriving at one sonabuoy is mistaken to 

be the same as the transient arriving at another sonabuoy, the resulting TDOA estimate 

will produce an erroneous target position. This in turn may lead to errors in tracking and 

ultimately possible erroneous SPL calculations. 



III.   MOMENT-BASED SIGNAL PROCESSING 

Most of the traditional work on transient processing and TDOA estimation is 

based on the use of second order statistics and classical (i.e., Fourier-based) methods of 

spectrum estimation [Ref 2], [Ref 3], [Ref 4], [Ref 5], [Ref 6]. Recently, new work has 

appeared using techniques involving higher order moments of signals and higher order 

spectra, such as the bispectrum [Ref 7]. 

The motivation for using the bispectrum in transient discrimination and TDOA 

estimation is twofold. First, the higher order spectra suppress Gaussian noise processes 

of unknown spectral characteristics. Secondly, these spectra, unlike the usual power 

density spectrum, preserve phase information [Ref 7]. In the last few years there has 

been a considerable amount of new research done in using the bispectrum and 

trispectrum for transient detection, time delay estimation and classification of signals 

[Ref 7:p 313], [Ref 8], [Ref9], [Ref 10], [Ref 11], [Ref 12]. 

This chapter defines the signal model used in this thesis and the analysis of these 

signals based on second and third moments. Finally, a set of algorithms for 

discrimination and TDOA estimation using third order moments is discussed. 

A.        SIGNAL MODEL 

Before any further analysis can be done it is necessary to develop a signal model, 

which can be used for the analysis of transients arriving at two sonabuoys. As mentioned 

previously, there are three cases to be considered. In the first case, the transient arriving 

at the second sonabuoy is the same as the transient arriving at the first sonabuoy. In the 

second case, the two arriving transient signals are different while in the third case only 

noise is present at the second sonabuoy. It is also assumed that the sonabuoys used are 

omni-directional and that their separation in the sonabuoy field is large enough so that 

noise at the first sonabuoy is uncorrelated with noise at the second sonabuoy in both 

space and time. 

The following simple model can be used to represent a single transient arriving at 

two different sonabuoys: 



xl(k) = s{k) + 77l(k) 

x2{k)=As{k-L)+rl2{k\ (3-1} 

where x.(k) is the noise-embedded signal arriving at sonabuoy i, s(k) is the transient 

signal itself, and rj.(k) is white gaussian noise. Note that the signal at sonabuoy 2 is 

subject to a relative attenuation A and delay L with respect to the signal at sonabuoy 1. 

The frequency domain expression for these signals is 

Xl(a>)=S{co)+Nx{co) 

X2(co) = S((0)e-JaL
+N2((a), (3'2) 

where the uppercase letters represent Fourier transforms of the respective signals in Eq. 

3.1. 

If the transient arriving at sonabuoy 2 is different from the transient arriving at 

sonabuoy 1, the received signals are given by: 

*,W = s(*)+!;,(*) 

where r{k) is the other transient arriving at sonabuoy 2 with time delay L relative to s(k). 

The corresponding expressions in the frequency domain are 

Xl(a>)=S(co)+N](a>) 

X2{co)=R(coyj°>L
+N2{co). (3-4) 

If there is no transient present at the second sonabuoy, the two received signals 

are 

xXk) = s{k)+n,{k) 

x2{k) = V2{k). (3-5) 

In this case the signal received at sonabuoy 2 consists entirely of noise and the frequency 

domain representation of the two signals is thus: 

X1(a>) = S(co)+Nl(co) 

XA*>) = N2{«>). (3-6) 

B.        MOMENTS AND CUMULANTS OF A RANDOM PROCESS 

For the purposes of this thesis, the following notation and definitions are used. 

The n'h moment of a real stationary random process is [Ref7:p. 15] 

10 



< fc>^2»-.V,,) = £{x(£)x(£ + r,\jc{k + V])}, (3. 7) 

where £ denotes statistical expectation and T. represents the ith lag. Note that m\ (r) is 

the ordinary autocorrelation function. 

In the analysis of signals using higher order statistics, cumulants rather than 

moments are generally used. Cumulants of order n are defined by certain linear 

combinations of products of moments of order n and lower [Ref 7:p. 15]. Cumulants of 

Gaussian random processes have the distinction that they are all zero for order n greater 

than 2. Thus signals imbedded in additive gaussian noise theoretically appear naked 

when subjected to analysis using higher order cumulants. The n'h order cumulant is 

denoted by 

cn
x(Tl,r2,,....,Tn_1,) = Cum[x(k)x(k + TXAk + Tn-r)] 0- 8) 

For a more detailed definition of cumulants the reader is referred to [Ref 7:p. 9]. 

The following relationships exist between moments and cumulants for stationary 

random processes [Ref 7:p. 9]: 

a. First Order. 

cl
x=m\=E{x{k)} (3.9) 

b. Second Order. 

c2Ah) = ™2M)-{™\)2 (3.10) 

c. Third Order 

^(r1,r2) = ^(r1,r3)-(^)[m,2(rI) + m,2(r2) + ^2(r2-r1)]+2(mi)3 

(3.11) 

Using these relationships, zero mean, white Gaussian noise has the characteristics listed 

in Table 1. 

11 



n m" c" 

1 0 0 

2 c2 a2 

3 0 0 

4 3a4 0 

Table 1. Moments and cumulants for white gaussian noise for r, = r, = T. = 0 

C.       N-TH ORDER "MOMENTS" OF A DETERMINISTIC SIGNAL 

In this thesis, we consider transients to be deterministic signals. Consequently, 

concepts such as statistical moments are not defined. However certain operations in the 

time domain, which are analogous to estimating moments for realizations of a random 

process, are still useful for deterministic signals. Some authors (e.g., Nikias and 

Petropulu [Ref 7]) have referred to these operations as computing "moments and higher 

order spectra for deterministic signals." Since some of the techniques we have adapted 

are due to authors using this concept, we will adopt this concept here as well. 

In general the nth order moment for an energy signal, x{k), is defined as [Ref 7:p. 

78] 

oo 

< fa —v.) = £ x(k)x(k + r, }.jc{k + v,), (3. 12) 

and for a power signal [Ref 7:p. 100] as 

I   J+N-l 

< (h v..r„_,) = — Z  x(k)x(k + r^.-xik + r„_,), (3. 13) 

where J is an arbitrary starting point of the summation and N is the period of the signal. 

From these expressions, moments can be considered as a measure of the degree of 

similarity between a signal and delayed or advanced replicas of itself. The nth order cross 

moment for n energy signals is defined as 

CO 

ml 
A = -00 

(3. 14) 
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The n order moment spectrum is the Fourier transform of Eq. 3.12 and can be 

expressed as Fourier transforms of the signal. For energy signals, this is given by [Ref 

7:p.85] 

Mn
x{(ol,...G)n_x) = X{cDx)..X(con_l)X* («,+.. + co„_x), (3.15) 

which can be written in terms of magnitude and phase as 

Mn
x (<y, ,...con_x )| =1 X{cox) |.. | X(con_x) || X{cox +.. + con_x) | 

^:(^,...OJn_x) = ^COx)+... + <f>(cOn_x)-^((Dx..,COn_xl 

where \M"x(cox,...o)n_x)\ is the magnitude term and x¥n
x(ax,...con_x) is the phase term. 

Orders n=2, 3 and 4 are important special cases of moments. In the frequency domain 

these orders have been termed Power Spectral Density (PSD), Bispectrum, and 

Trispectrum, respectively. 

D.        SECOND-ORDER MOMENTS 

1.        Definitions of Moments and Spectra 

Using Eq 3.12, the autocorrelation of a deterministic signal, x{k), is written as 

oo 

m\ (T) = I x(k)x(k + T). (3.17) 

From Eq 3.16, the magnitude and phase components of the PSD are given by 

\MM-\XH 

From these expressions, it can be seen that the PSD is an even function with no phase 

information. Similarly, the cross-correlation of two deterministic signals is 

oo 
m\*t (0 = S xx{k)x2{k + r) (3. 19) 

The corresponding cross-spectrum is the Fourier transform of Eq 3.19: 

M2
XiX2(a>) = Xx(co)x;{a>), (3.20) 

which can be written in terms of magnitude and phase 

13 



(3.21) 

*i>) = *>)-*>) 
2.        Second Order Moments of the Received Signals 

Since cross-correlation is used extensively throughout the thesis, it is important to 

determine the cross-correlations for the three signal cases presented earlier. Before doing 

this, let us first investigate the cross-correlation between the two noise sources rjx (k) and 

72 (k) at the two sonabuoys of interest. The cross-correlation and the corresponding 

cross-spectrum are given by: 

03 

*--» (3.22) 

The expectation of this term is zero since the two white noise sources are uncorrelated. 

However, the term, M\^ , itself is not zero. Applying this to the case where the same 

transient arrives at the two sonabuoys, the cross spectrum is 

M]xXi{co)=\S{cof e^ +M^(a>)+M*n (co),      .   (3. 23) 

where M2
XI) are the cross terms. From this equation, it can be seen that the time delay L 

is imbedded in the linear phase term e~jaL. This linear phase term is therefore important 

in finding the TDOA between the two signals. 

For the case where different transients arrive at the two sonabuoys, the cross- 

spectrum is 

M'J^^S^p^Je^^^K-^ + M2J(v) + M2
X!? (a>)        (3.24) 

For this case it can be seen that there is the same linear phase term e~JaL as that of Eq 

3.24. Therefore the same TDOA result would be observed for Eq 3.24 and 3.25 even 

though the transients are different. The linear phase can therefore not be used as a means 

to discriminate between two transients. In the last case, where there is only noise present, 

the cross-correlation is 

KM=MiM (3.25) 
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For this case, it is expected that the phase will be random, and therefore no linear phase 

term will exist. 

E.        THIRD-ORDER MOMENTS - BICORRELATION AND BISPECTRUM 

1.        Definition of Moments and Spectra 

The third-order moment of a signal is called the bicorrelation. From Eq 3.12, the 

auto-bicorrelation of a deterministic real signal is defined as 

QO 

ml{Ti>T2)= 2 x(k)x(k + Tl)x(k + T2) (3.26) 
k--aa 

and from Eq 3.14 the cross bicorrelation is 

oo 

™W3 fc»*2) = £ x, (k)x2 (k + r, >3 (k + T2 ). (3. 27) 
£=-co 

For this thesis, where there are only two data streams, the cross-bicorrelation will consist 

of only two signals, *,(&) and x2(k). The cross-bicorrelation functions of interest are 

oo 

mllV2fc>r2) = 2 x,(k)x,(k + TX)x2(k + r2) (3.28) 
t=-OD 

and the terms m]^ , rn\^ andm^ , which are defined in an analogous way. 

The auto-bispectrum is 

M\ fo, co2) = X{cox )x(co2 )X* (a, + co2), (3. 29) 

or in terms of magnitude and phase 

\M] {a>x ,a>2\ = \x{o>x ]\x{co2 Jxfa + a>2 \ 

y;(al,ü)2)=</>x(a1)+0x(ü)2)-0x(a)1+a)2). 

As can be seen, by comparing Eq 3.18 and Eq 3.30, a distinct difference between the 

second order moment spectrum and the bispectrum is that the bispectrum contains phase 

information. The cross-bispectrum is 

MlxXlXM^0)2) = X2{col)X,{co2)X*{co, +co2), (3. 31) 

or in terms of magnitude and phase 
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^ W3 fa.. ®2 | = |*2 fa 1^3 fe J*. (®1  + «2 J 
(3. 32) 

^W, fal. Ö>2 ) = &2 fal ) + &, fe ) - ^ fa + G>2 ). 

2.        Third Order Moments of the Received Signals 

Both second order moments and third order moments are used extensively 

throughout this thesis. It is therefore important to develop the third order moments for 

the three signal cases. To provide a motivation for the algorithms to be used, let us 

consider a situation in which the noise is identically zero. In reality the noise terms 

TV, fa and N2(co) are not zero, although the expected value of their higher order 

moments defined earlier vanish when the noise is Gaussian. 

For the case where the same transient arrives at both sonabuoys, the signals in the 

frequency domain are given by Eq. 3.2. Using Eq. 3.32, the bispectrum of these signals 

is given by 

^ w, fa, > *>21 = \Sfa )\S(co2 |sfa + co2 \ 
(3. 33) 

^w, fa > *>2) = <t>s fai)" <oL + (f>s (fl>2) - <f>s fa, + co2), 

where <j)s is the phase of the signal S(a>). Equation 3.33 is the expression for the cross- 

bispectrum between the data streams at sonabuoy 1 and sonabuoy 2 in the absence of 

noise.    The signal phase terms, &fa)+&fa2)-^fa +a2), can be eliminated by 

making use of the auto-bispectrum at sonabuoy 1, which is given by 

K fa, fl>21 = |Sfa )\S(co2 pico, + co2 \ 
(3. 34) 

VF,3
1fai'fö2) = ^fa1)+^fa)-^fai +o)2). 

This expression is then used to normalize the cross-bispectrum and results in the identity: 

— n-Ja\L 

-7777 V = e'J^. (3.35) 

From Eq 3.35 it can be seen that by normalizing the bispectrum all the phase terms are 

cancelled except for the linear phase term, e'-"0'1. 
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For the case of different transient arrivals, the cross-bispectrum can be obtained 

from Eq. 3.4 and Eq. 3.32 as follows 

M w fa >°>2 \ = \Rfa Mffl2 M«h + °>2 } 
(3. 36) 

^w, fai, ö>2) = 0* fa ) - <a£ + ^ (ßj2) - (j,s (cox + co2), 

where <pR(co) is the phase of the signal R(CO). In this case the normalized cross- 

bispectrum takes the form 

^>fl,) = ^^Ä^h^V^. (3.37) 
M\[cox,co2)      \S{cox\ 

y      } 

Note that, unlike the first case (see Eq. 3.35), the linear phase term cannot be separated 

from the other phase terms. In both cases however, the two-dimensional bispectrum is 

reduced to a function of a single variable <y,. 

F.        SIGNAL PROCESSING ALGORITHMS 

1. Bispectrum Linear Phase Detector 

The analysis of the previous section shows that when the same signal is arriving 

at both sonabuoys, a linear phase term is present in the normalized function l{cox,co2). 

The time delay L can now be extracted using the following ad hoc method developed for 

time delay estimation [Ref 16]. 

To estimate the delay L, a third-order "hologram" transformation is required. 

This is defined to be [Ref 7:p. 324] 

IC   It 

T(r)= J ^{CO^Y^d(oxd(o2. (3. 38) 
-n-ii 

Since / reduces the bispectrum to one dimension, the third-order hologram is a one- 

dimensional Fourier transform over the dimension containing the linear phase term, 

followed by an integration over the second dimension. Note that when the same signal is 

present at both sonabuoys, Eq. 3.38 takes the form 
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a n 

T(T)= J je^-^dco,. (3.39) 
-n-n 

Since all the elements of this second dimension are in phase they add up constructively, 

giving a strong peak at r = L. Since we are working in the discrete-time domain the 

third-order hologram can be rewritten as 

M-\ M-\ 

r(r)=XX*p«2>"Mr. (3.40) 
<a1=0<u2=0 

The absolute value of T{t) will display a strong peak at the location of the of the time 

delay between the two signals of sonabuoy 1 and sonabuoy 2. 

For the case where the two transient arrivals are different, the third-order 

hologram takes the form: 

T^= Y^le^^e^^^d^d^. (3. 41) 

In this case, the third order hologram contains extra phase terms fa and fa, which will 

either add in phase or out of phase. Thus, in general, 7\r) will not exhibit a strong peak. 

2. Bispectrum Discriminator 

The bispectrum linear phase detector can also be used as a discriminator by 

applying a simple threshold technique to the third order hologram.    The threshold 

technique is applied by first noticing, from Eq 3.41, that if the transients are different the 

\R(   II 
hologram contains phase terms fa-fa-coL and magnitudes     ; '{ . On the other hand if 

the transient signals are the same, the hologram contains only the linear phase term &L 

(Eq 3.39). The phase and magnitude terms of Eq 3.41 will add constructively or 

destructively to produce peaks and valleys to the bispectral hologram. If the signals are 

the same, there will be only one peak in the hologram, and that peak will be at the delay 

L. 

In summary, one can expect that if the SNR is sufficiently large and the signals 

are the same, a peak at delay L will dominate the hologram. On the other hand if the 

signals are different, there will be a maximum value at delay L as well as other extrema at 



delays other than L. These other extrema will be larger than the noise and can therefore 

be used to discriminate. A discrimination algorithm is therefore proposed as follows: 

Step 1: 

Estimate T(x) 

Step 2: 

Find the maximum value of the hologram 

Q = arg max l(x) 
T V ) 

(Q is the magnitude of the hologram at the estimated TDOA). 

Step 3: 

If x0 is the value of x that produces the maximum in step 2 then compute 

Ö2=argmax(r(r)-öl 
r       \ ) 
x*x0 

Step 4: 

Define a threshold using Eqs. 3.42 and 3.43 as 

1 (N-\ 

ßr=TT^Zr(r)-ß-ß2 
Vi=o AT-2 

Step 5: 

Compare QT to the difference Q -Q2. If 

QT>Q-Q2 

the signals are considered to be different; if 

QT<Q-Qi 

the two signals are considered to be the same. 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 
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IV.   SUBSPACE-BASED SIGNAL PROCESSING 

Signal subspace methods have been used in a variety of problems for estimating 

spectral lines and direction of arrival in sensor arrays. A good introduction to these 

methods for spectrum estimation can be found in [Ref 17]. Recently, the use of subspace 

methods has been explored for estimating TDOA [Ref 20], [Ref 21]. This thesis uses the 

same approach as [Ref 20] for TDOA estimation and further adapts the subspace method 

for transient discrimination. 

The discussion begins by defining the subspace model for the TDOA problem and 

then moves on to the MUSIC method, which was used for delay estimation and 

discrimination. The chapter finishes with a discussion of how the MUSIC method was 

adapted and used for discrimination 

A.        SUBSPACE 

To understand the principle of subspace methods and their application to the topic 

of this thesis, consider the case where the same signal is arriving at two separate 

sonabuoys (see Eq. 3.1). The frequency domain representation of Eq. 3.1 is given by Eq 

3.2. From Eq. 3.2, it can be seen that the linear phase term ejcoL contains the delay L 

between the transient arrivals at sonabuoy 1 and sonabuoy 2. The cross-spectrum for the 

two received signals, given by Eq 3.23, is repeated here for convenience 

M^H^HV^ +M2
m2(co)+M2

X!? (a>). (4. 1) 

It can be argued [see Ref 20] that when Eq 4.1 is sampled at equally-spaced values in 

frequency,  the  resulting  data  sequence,   y(k) = M^X2((ok),   satisfies  the  conditions 

necessary to apply a signal subspace model [Ref 17]. Specifically, an NxN correlation 

matrix is estimated for the data ;/(£), and the corresponding TV-dimensional vector space is 

divided into signal and noise subspaces. The approach followed to estimate TDOA using 

subspace methods is to project a steering vector of the form 
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d(/): (4.2) 

onto the noise subspace and plot the result as the linear phase, /, is varied. When the 

parameter / is equal to the true delay L between the sonabuoys, the projection onto the 

noise space is zero. In subspace algorithms, such as MUSIC, this null projection can be 

used to estimate TDOA. 

Unfortunately, the cross-spectrum for the case where different transients are 

arriving at sonabuoys 1 and 2 also contains a linear phase term (see Eq. 3.24). Therefore, 

the basic subspace techniques are not useful for transient discrimination without suitable 

modification. 

B. MUSIC 

In the application of subspace techniques to linear phase detection between two 

transients, the MUSIC (Multiple Signal Classification) method developed by Schmidt 

[Ref 18] is used. A brief outline of the method is provided here. 

The MUSIC algorithm is implemented in the frequency domain by first obtaining 

the cross-spectrum of the two signals received at the sonabuoys. Since M2
XX {co) is 

formed using a DFT, this data is available at samples cok, k= 0,1,2...NDFT-1, where NDFT 

is the size of the DFT. From this frequency domain data, a data matrix2 M* r is formed, 
x\x2 

and the correlation matrix is estimated as 

R,=M^(M*zJ
r. (4.3) 

This can be decomposed into an orthonormal eigenvector matrix 

E = [E^Eno„J (4.4) 

and a diagonal eigenvalue matrix 

See [Ref 17] for various methods of forming a data matrix 
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A 
0    A. 

(4.5) 

The columns of Esig and Enoise form an orthogonal basis set and define the signal and 

noise subspaces, respectively. It is therefore possible to write R* as 

Rx = EAE*r =E^Ai/gE5 +Eno£seABO,,XL- (4. 6) 

The columns of the eigenvector matrix can be used to form projection matrices for the 

signal and noise subspaces of the form [Ref 17:p. 623]: 

1 sig       ^ sig ^ sig 

P      =E     E*r  . noise noise    noise 

(4.7) 

When the projection matrix P is multiplied by a vector d, the result d = Pd is the 

projection of d into the corresponding subspace (see Figure 5). 

*  Signal 
Basis Vector 

Noise 
Basis Vector 1 

Noise 
Basis Vector 2 

Figure 5.        Projection of vector d onto noise subspace by MUSIC. 

As discussed previously, subspace methods make use of the fact that the 

projection of the steering vector d(/) , given by Eq. 4.2 onto the noise subspace is zero. 

The MUSIC algorithm [Ref 17:p. 627], in particular, evaluates the quantity 

1 1 
PMU = 

d*r(/)P„0,ed(/) d"(/£>,erd(/)' 
(4.8) 

/=2 
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where PMU is the MUSIC indicator function for d(/)and e^-.e^ are the eigenvetors 

spanning the noise subspace (the eigenvector e, spans the signal-subspace which is one- 

dimensional) The value of / where PMU exhibits a sharp peak determines the TDOA 

between the signals. 

C.        SUBSPACE DISCRIMINATOR 

A subspace discriminator was developed by comparing projections onto multiple 

subspaces using the MUSIC algorithm. The following considerations are proposed to 

motivate this discriminator. 

Since the subspace method in this thesis is based on the cross-spectrum between 

two sonabuoys (see Eq. 4.1) it is important to investigate the differences between the 

cross-spectrum for the case where the same transient arrives at two separate buoys and 

that for the case where different transients arrive at two separate buoys.   This will be 

helpful in understanding the subspace discriminator. From Eq. 3.24, it can be seen that if 

the transients are different, the cross-spectrum contains phase terms <ps(co)-<pR(co)-coL 

and magnitudes \R{COX ^\S(COX )j. However, if the transient signals are the same, the cross- 

spectrum contains only the linear phase term coL (Eq. 3.23).   Now, if the subspaces 

formed using Eq. 3.23 are compared to those formed using Eq. 3.24 the two subspaces 

would typically be rotated with respect to each other as illustrated in Figure 6.   The 

implication of the rotation of the subspaces due to the phase terms of Eq. 3.24 is that 

when the parameter / of the steering vector, d(/),   is equal to the delay L between the 

sonabuoys, the projection onto the noise subspace will not be zero as in the case when the 

same transient arrives at the two sonabuoys.   By comparing projections, it would be 

found that the differences in magnitude of the projections would be large if the transients 

were the same.   On the other hand if the transients were different, the differences in 

magnitude between the projections would be small.  These differences in magnitude are 

used to discrimnate between transients. 

This method is developed further by noticing that the noise projection matrix, 

P'noise, can be written as: 
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f noise = 2 e,.e*r = I - e,e;r, (4. 9) 
1=2 

where I is an NxN identity matrix.Let us further define P* as the projection operator for 

the subspace formed by leaving out the kth basis vector. Thus 

N 

p*=£e/e/r=I-ete7. (4.10) 
i*k 

Further we define the following set of additional indicator functions 

h,®~H*Mmrvn-wm- k=2'-N-(411) 

The proposed subspace-based discrimination algorithm is as follows: 

Stepl 

Estimate the correlation matrix Rx and find the eigenvectors e,-. 

Step 2 

Compute the maximum estimate 

ö = argmax p 
*.'     v   J 

Step 3 

If k0 is the value of k that produces the maximum in step 2 then compute 

Q2 = arg max 
kj 
k*k. 

P 
\    ) 

(4. 12) 

(4. 13) 

Step 4 

Compare the difference Q - Q2. If 

ß-ß2<l (4.14) 

the signals are considered to be different. If 

ß-ß2<l (4.15) 

the signals are considered to be the same. 

25 



Signal 
Basis Vector 

Signal 
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Noise 
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Noise 
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Noise 
Basis Vector 2 

Noise 
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Figure 6.        Relative rotation of subspace due to phase terms of Eq. 3.24. 
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V.   SIMULATION RESULTS 

A.        SIMULATION CONDITIONS 

1.        Synthetic Transients 

In this thesis a set of four synthetic transients was used to evaluate each of the 

algorithms described in the previous chapters. The four transients were a CW sinusoidal 

pulse, an exponentially decaying sinusoidal pulse, a linear phase modulated (LFM) pulse 

and a simulated finback whale transient. 

Each transient can be described as an amplitude- and phase-modulated sinusoid, 

given by the general expression [Ref 19:p. 202] 

p{t) = a{t) cos 6(t), (5.1) 

where a(t) is the time-varying amplitude or "envelope" of the signal and 0(t) is the time- 

varying angle. The angle 9(t) is of the form 0(f) = 2nfct + y(t) so that 

p(t) = a(t) cos(coct + r(t)), (5. 2) 

where/c is the center frequency and y(t) is the phase modulation. Each of these transients 

is described in more detail below. 

For the CW pulse, the envelope and phase modulation are given by: 

fl,   0<t<T 

[O,   otherwise 

7(0 = 0 (5.4) 

where T is the pulse length.  A plot of this transient is given in Figure 7 for T = 40 ms 

and fc= 50Hz. 
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Figure 7.        CW Pulse. 

The exponentially decaying sinusoidal transient is described by the following 

envelope and phase modulation terms 

a(t) 
\e'a',   0<t<T 

(5.5) 
[0, otherwise 

Y(?) = 0, (5. 6) 

where T is the pulse duration and a is the attenuation constant. This transient is shown in 

Figure 8 for a = 200 and T = 40 ms. 

1 A : :  ,.... 

0.8 \ - 

0.6 \ - 
CD 
"§   0.4 

1   0.2 i 
\ - 

< 
0 \                                      / "\.v 

-0.2 
/ _ 

-0 4 
\y 

C ) 0.01             0.02 
time (s) 

0.03 o.c 

Figure 8.        Exponentially Decaying Sinusoidal Transient. 

For the Linear Phase Modulated (LFM) transient, a Gaussian envelope of the 

form 
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a(t): e   /2a' 

0, 

, 0<t<T 

otherwise 
(5.7) 

was used. The phase is a quadratic function of time: 

_2x-Af-t2 

r(t) 
IT 

(5.8) 

where A/ is the desired change in instantaneous frequency over the interval T. A plot of 

T 
this transient for T = 40ms ,a2 = — and A/ = 100Hz is shown in Figure 9. 
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Figure 9.        LFM Pulse. 

The finback whale transient is the most complicated of all the transients that were 

synthesized. This transient is modeled as follows [Ref 8]: 

\3IT)-t,        0<t<T/3 

/N      1, T/3<t<2T/3 
3-(3/T)-t,    2T/3<t<T V      ; 

0, otherwise 

y(t) = 27r-23.e^'2iz> (5.10) 

with fc= 0. This transient is plotted in Figure 10 for T = 1 s . The instantaneous 

frequency decreases nonlinearly from 23 Hz to 18 Hz with the most rapid decrease 

occurring initially and the rate of decrease becoming smaller with time. 
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Figure 10.      Finback Whale Transient. 

2.        Signal-to-Noise Ratio 

During the evaluation of the algorithms, the synthetic signals described above 

were subject to additive white Gaussian noise. The signal-to-noise ratio (SNR) is defined 

as follows. Let PlramieM represent the average power in the signal: 

N,-l 

N. ■SK»)r (5.11) 
5   n=0 

Note that the transient signal power is normalized by the length of the transient Ns and 

not the entire observation time. This is done to prevent the SNR from changing with 

changing observation time. The SNR in dB is then defined as 

SNR = 10 logI0 
P'~' = 10 login 

PtrTen' dB 
p 

Noise 
>10 2 (5. 12) 

where <72noise is the noise variance used in the generation of the Gaussian white noise. 

B. RESULTS 

To evaluate the algorithms, two sets of experiments were used, one to perform 

TDOA estimation and the other to perform discrimination. For the first set of 

experiments, the same transient arrives at both sonabuoys. For this case all the transients 

were evaluated in turn, over a range of SNR values.  For the second set of experiments, 
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all combinations of transient arrivals at sonabuoys 1 and sonabuoys 2 were tested for 

discrimination. 

In all of the experiments, the transients were set to the following lengths: 20 ms 

for the CW sinusoidal pulse, 40 ms for the exponential decaying sinusoid and LFM pulse, 

and 1 s for the whale transient. The delay, L, between the transients was always kept at 

40 samples, which is equivalent to 200ms. A sampling rate of four times the required 

Nyquist frequency was used for each transient. This satisfies the requirement for the 

bispectrum, which requires a sampling rate of three times the maximum frequency [Ref 

8]. The total length of each signal used was 256 samples or 1.28 s. The parameters are 

summarized in Table 2. 

/e(Hz). T L (delay) A/ a 

CW Pulse 50 20ms 200ms 

Exponential 

Decaying Sinusoid 

50 40ms 200ms 200 

LFM 50 40ms 200ms 1kHz 

Whale Is 200ms 

1. 

Table 2. Transient parameters used in experiments. 

TDOA Estimation 

The TDOA results will be discussed as follows. First, an example of the basic 

results using the exponentially decaying sinusoid transient will be given for both the 

subspace method and the bispectrum linear phase detector. After this, certain 

"probability" curves for TDOA will be defined and presented for each transient starting 

with the subspace method and ending with the bispectrum results. 

The subspace method uses the MUSIC algorithm with a correlation matrix (Eq. 

4.3) of size N = 60.   Figure 11 shows a plot of the function PMU  (see Eq. 4.8) as a 

function of / using a SNR of 12 dB. Figure 12 is a plot of the results for a SNR of 5 dB. 
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Figure 11.      Subspace TDOA estimation for an exponentially decaying sinusoid 

using an SNR of 12 dB and correlation matrix size of N=60. 

As can be seen from these figures, the algorithm estimates the correct TDOA of 40 

samples or 200 ms for a SNR of 12 dB, and yields a completely incorrect value of-63 

samples for an SNR of 5 dB. 
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Figure 12.      Subspace TDOA estimation for an exponentially decaying sinusoid 

using an SNR of 5 dB and correlation matrix size of N=60. 

The rationale for using a large correlation matrix is twofold. First, if the 

correlation matrix is too small, the TDOA estimate tends to be less accurate. A typical 

result is shown in Figure 13 for the 12 dB-SNR case using a correlation matrix of size N 
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= 5. As can be seen in this figure, a TDOA of 38 samples (instead of the correct value 40 

samples) was estimated, and the peak is broader than that shown in Figure 11. Secondly, 

for the subspace method to function as a discriminator, it was found that better results 

were achieved at lower SNR, when the correlation matrix and thus the observation space 

was larger. 
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Figure 13.      Subspace TDOA estimation for an exponentially decaying sinusoid 

using an SNR of 12 dB and correlation matrix size of N = 5. 

For the bispectrum linear phase detector, no windowing was applied to the data. 

Windowing is usually applied to obtain smooth estimates of the bispectrum [Ref 7:p. 

126]. Due to the short data lengths used in this thesis, however, it was found that 

windowing did not improve the results and was therefore not used. Typical results for the 

bispectrum linear phase detector are shown in Figure 14 and Figure 15 for the 

exponentially decaying sinusoid using SNR values of 12 dB and 5 dB. In both cases the 

TDOA is indicated by the maximum value of the hologram, which in turn is a single 

sample. The performance is similar to that of the subspace method. At 12 dB the result 

is exactly correct while at 5 dB the method gives completely erroneous results. 
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Figure 14.      Bispectrum TDOA estimation for an exponentially decaying transient 

using an SNR of 12 dB. 
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Figure 15.      Bispectrum TDOA estimation for an exponentially decaying transient 

using an SNR of 5 dB. 

Figure 16 shows typical TDOA results using the classical generalized cross- 

correlation methods (GCC) [Ref 2] at a SNR value of 12dB. ROTH [Ref 13], SCOT [Ref 

14] and PHAT [Ref 15] weighting was used in addition to straight cross-correlation (no 

special weighting was used). As can be seen in Figure 16 the correlation, SCOT and 

PHAT algorithms give strong peaks at the estimated TDOA while ROTH gives a very 
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noisy signal with no dominant strong peak. In general, it was found that these techniques 

gave less accurate TDOA estimates than the bispectral and subspace algorithms, even at 

high SNRs. 
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Figure 16.      TDOA estimates using (a) cross correlation, (b) ROTH, (c) SCOT and 

(d) PHAT with an SNR of 12 dB. 

TDOA-estimate performance of the subspace and bispectral algorithms was 

evaluated using simulations of one thousand realizations at a fixed SNR. For each 

realization, a different white noise source was added to the original signal. The output of 

these simulations was used to create a statistical measure of performance for TDOA, 

which we call the probability of correct TDOA PT. PT represents the fraction of 1000 

trials for which the algorithm estimates the correct time delay between transients received 

at the two sonabuoys. PT curves were generated for SNR values of 8 dB to 20 dB for 

both the subspace method and the bispectrum linear phase detector. 

Figure 17 and Figure 18 (a) shows the PT results of the subspace algorithm for the 

CW pulse. As can be seen from the figures, the subspace algorithm gives excellent 

results for SNR > 17 dB, where a PT of 1.0 is achieved. 
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Figure 17.      PT versus SNR for CW pulse using the subspace linear phase detector. 

The PT curves for the exponentially decaying transient and the LFM transient are 

shown in Figure 18 (b) and (c). Once again, a PT value of 1.0 is achieved for SNR > 

17dB. The PT for the whale transient (Figure 18 (d)) shows poorer results, achieving a 

maximum PT of 1.0 at a SNR of 20 dB. This poorer performance of the algorithm may 

be be attributed to two factors. First, the whale transient was the longest of all the 

transients used (being 1 s long) thus filling most of the data observation window. 

Secondly, it is a non-linear function giving it a complicated phase structure. It is also 

important to note that the results in Figure 18 (d) are based on a longer data observation 

length than used for the other TDOA results (see Table 3). 

Figure 18 (a) and Figure 19 show the PT for the CW pulse using the bispectrum 

linear phase detector. From these figures, it can be seen that a PTof 1.0 is never achieved 

but that a PT of 0.9 is achieved at a SNR of 15 dB. The remaining plots in Figure 18 (b), 

(c) and (d) also show that a PT of 1.0 is not achieved for the bispectrum method. For the 

exponentially decaying sinusoid (Figure 18 (b)) a PT of 0.9 is achieved at 11 dB while for 

the LFM pulse (see Figure 18 (c)) a PT of 0.9 is achieved at 12 dB. As in the case of the 

subspace methods, the PT of the whale transient was obtained using a longer data 

observation window, where a maximum PT of 0.9 was achieved at an SNR of 16 dB 

(Figure 18(d)). 
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Figure 18.      Combined PT for subspace and bispectrum linear phase detectors: (a) 

CW pulse, (b) exponential decaying sinusoidal transient, (c) LFM pulse and (d) 
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Figure 19.      PT for the CW pulse using the bispectrum linear phase detector. 
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Figure 18 gives a summary of the TDOA results for all of the experiments. As 

can be seen in Figure 18, the bispectrum linear phase detector has higher PT values at low 

SNR than the subspace linear phase detector for the exponential, LFM and whale 

transients. However at higher values of SNR, the subspace algorithm gives better PT 

results (i.e., PT of 1.0) which is never achieved using the bispectrum linear phase 

detector. 

In comparing the two methods (subspace and bispectrum) one may note that 

although the bispectrum method never achieves a PT of 1.0, in three out of the four cases 

it reaches the value of PT = 0.9 earlier than the subspace method. Table 3 compares these 

results by listing the minimum SNR values for which a PT of 0.9 is achieved in each of 

the test cases. 

CW Pulse Exponential LFM Pulse Whale 
Subspace 13dB 15dB 14dB 18dB 

Bispectrum 15dB lldB 12dB 16dB 

Table 3. Minimum SNR required to achieve PT = 0.9. 

2.        Discrimination Experiments 

The transient discrimination results will be discussed in a fashion similar to that 

of the TDOA results. The discussion will therefore start by giving a brief introduction of 

how the algorithms were implemented by using the CW and LFM pulses as examples. 

After this, the probability curves for discrimination will be discussed for every 

combination of transients. 

As discussed previously, the subspace discriminator makes use of projections into 

multiple subspaces and compares the maximum values of the indicator functions Pk Eq. 

4.11 with the maximum value of the function PMU (Eq. 4.8). It is found that if the 

transients arriving at the sonabuoys are the same the difference in peak values will be 

large as shown in Figure 20(a). If the difference is found to be small (i.e., < 1) then the 

two transients are different, as shown in Figure 20(b). Thus in making these 

comparisons, it is possible to discriminate between transients. 
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Figure 20.      Typical Pk estimates, (a) when the signals are the same and (b) when 

the signals are different. 

In the case of the bispectrum discriminator, the phase terms fa - fa (see Eq 3.37), 

which are only present in the case of different transient arrivals, add up constructively or 

destructively thus giving features to the hologram of the bispectral linear phase detector. 

For the case where the transients are the same, the phase terms fa - fa are zero; therefore 

no extra features are added to the hologram. If the difference in magnitude between these 

features is large compared to the average of the hologram, it is possible to discriminate 

between transients. These characteristics can be clearly seen in Figure 21. Figure 21(a) 

shows the single peak that appears for similar transient arrivals while Figure 21(b) shows 

the multiple peaks and extra features that are present due to the phase terms fa and fa for 

different transient arrivals. 
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Figure 21.      Bispectrum linear phase detector. Stem plot of \T(T] for (a) similar 

transient arrivals and (b) different transient arrivals. 

The experiments for transient discrimination were as follows. Each algorithm 

was evaluated using simulations of one thousand realizations at a fixed SNR. For each 

realization, a different white noise source was added to the original signal. The output of 

these simulations was used to estimate the probability of correct discrimination (PDi). PDi 

represents the fraction of 1000 trials for which the algorithm discriminates correctly 

between two transients. PDi curves were generated for SNR values of 10 dB to 20 dB for 

both the subspace and bispectrum discriminators. The probability of incorrect 

discrimination, Pfa, was computed in a similar manner and also used as a performance 

measure. 

Figure 22 shows the results using the subspace discriminator where the 

exponentially decaying sinusoid is present at sonabuoy 1 and various transients are 

present at sonabuoy 2. For these curves, the vertical axis is labeled "Probability" because 

the Pfa and PDi are shown on the same plot. In Figure 22, the PDi curve for the exponential 
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Figure 22. PDi and Pfa (using subspace methods) between exponential decaying 

transient and exponentially decaying transient, CW Pulse, noise, LFM pulse and 

whale transient. 

decaying transient arriving at the first and second sonabuoy is shown. It can be seen 

from this curve that the algorithm discriminates correctly with a PD; of 0.9 or larger for 

SNR values greater than 17 dB.   Figure 22 also shows the Pfa for the other transient 
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arrivals at the second sonabuoy (i.e., CW pulse, LFM pulse, or the whale transient) and 

the Pfa when only noise (no transient) is present at the second sonabuoy. These curves 

show that the Pfa is very low. These are desirable results since they indicate that the 

algorithm can differentiate between the transients with a high probability of correct 

discrimination and a low probability of false alarm. Results for the other transients are 

summarized in Table 4; the corresponding curves are given in appendix A. It is 

important to note that the results for the whale transient are based on a longer data 

observation interval than the others. 

Transient 

Arriving 

B 

U 

O 

Y 

2 

CW Pulse Exponential LFM Pulse Whale Noise 

BUOYl 

CW Pulse PDi >0.35 for 

SNR>19dB 

Pfa < 0.08 Pfa < 0.01 Pfa=0 Pfa < 0.01 

Exponential Pfa < 0.02 PDi>0.9      for 

SNR>17dB 

Pfa < 0.002 Pfa=0 Pfa < 0.021 

LFM Pulse Pfa < 0.03 Pfa < 0.08 PDi>0.8       for 

SNR>18dB 

Pfa < 0.1 Pfa < 0.04 

Whale Pfa < 0.2 Pfa<0.18 Pfa<0.18 PDi>0.8    for 

SNR>18dB 

Pfa<0.19 

Table 4. PDi results using subspace methods. 

For the bispectral discriminator, the threshold QT (see Eq. 3.44) was adjusted by 

using a threshold gain to improve the results. The gain was applied to Eq. 3.44 in the 

following way: 

QT = (5. 13) 

where G is the threshold gain.    Threshold gains of 1, 2, 4 and 6 were used. 

Figure 23 shows the discrimination results for the exponentially decaying 

transient using the bispectral discriminator. Again, the vertical axis is labeled 

"Probability" because both the Pfa and PDi are shown on the same plot. For Figure 23, the 
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transient arriving at sonabuoy 1 is the exponentially decaying sinusoid. The PDi for this 

transient is shown in Figure 23. The other curves of Figure 23 show the results of the Pfa 

for the CW pulse, noise, LFM pulse and whale transient respectively. The symbols 

shown in Figure 23 are tied to the transient type and are consistant with what is used in 

Appendix B. The subplots in Figure 23 show the results when different threshold gains 

are used. 
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Figure 23.      PDi (using high-order methods) between exponentially decaying 

sinusoid transient, arriving at sonabuoy 1 and the CW pulse, exponentially decaying 

Sinusoid, noise, LFM pulse and whale transients arriving at sonabuoy 2. Threshold 

gain values of (a) 1, (b) 2, (c) 4, (d) 6 were used. 

43 



As can be seen in Figure 23, both Pfa and the PDi decrease with increasing 

threshold gain. A design compromise must therefore be made to have an acceptably high 

PD; and an acceptably low Pfa. For this thesis, a threshold gain of 4 was chosen. Table 5 

shows the discrimination results for the bispectral discriminator using this value for the 

threshold gain. 

Transient 

Arriving 

B 

U 

o 
Y 

2 

CW Pulse Exponential LFM Pulse Whale Noise 

BUOYl 

CW Pulse PDi   >0.8   for 

SNR>17dB 

Pfa < 0.2 Pfa <0.01 Pfa = 0 Pfa < 0.001 

Exponential Pfa < 0.3 PDi  >0.98 for 

SNR>14dB 

Pfa<0.15 Pfa = 0 Pfa < 0.001 

LFM Pulse Pfa < 0.05 Pfa < 0.03 PDi >0.95 for 

SNR>16dB 

Pfa = 0 Pfa < 0.001 

Whale Pfa=0 Pfa=0 Pfa = 0 PDi >0.2 for 

SNR>20dB 

Pfa=0 

Table 5. PDi using Bispectrum using a threshold gain of 4. 

The poor discrimination performance of the whale transient given in Table 5 may 

be attributed to the relatively short observation time of the data. Better results may have 

been obtained if longer observation times were used; however, it was not practical to run 

a large number of simulations for these longer observation times. 

C.        SUMMARY OF RESULTS 

The TDOA and discriminator results are summarized in Table 6 including the 

advantages and disadvantages of both algorithms. As has been previously shown in 

Figure 18, the bispectral linear phase detector tends to give a larger number of correct 

TDOA estimates at low SNR. On the other hand, the subspace algorithm gives 

consistently correct results (PT = 1.0) at high SNR, which is never achieved by the 

44 



bispectrum algorithm for SNR in the range of 8 dB to 20 dB.   Therefore the more 

desirable result may depend on the application where the algorithms will be used. 

For discrimination, the bispectral method gave the highest PDi results when a 

threshold gain of 4 was used. However, the Pfa increased with increasing SNR (see 

Figure 23). This is an undesirable result since even transients with high SNR will not be 

able to be separated. On the other hand, the subspace discriminator gave lower PDi values 

but had the advantage that the Pfa remained constant for all SNR values tested. 

Algorithm TDOA Discrimination 

Bispectrum Best Result: SNR > 11 dB 
gives     a     PT     of     0.9 
(exponential transient) 
Disadvantage: A Px of 1 is 
never achieved at SNRs < 
20dB 
Advantage:  High PT's are 
achieved at low SNRs 

Best Result: SNR > 14dB gives a 
PDJ of 0.98 (exponential transient). 
Disadvantages: Results depend on 
choice   of threshold   gain.      Pfa 

increases with increasing SNR. 
Advantages: Can achieve a high 
PDS at relatively low SNRs. Has a 
low Pfa for noise 

Subspace Best Result: SNR > 17dB 
gives a PT of 1. (exponential 
transient) 
Disadvantage:     High P-p's 
are  only  achieved  at high 
SNRs 
Advantage:    PT's of 1 are 
achieved. 

Best Result: SNR > 17dB gives a 
PD; of 0.9 (exponential transient). 
Disadvantages:    Computationally 
intensive. Low PDi at high SNRs 
Advantages:    Low   Pfa   for   all 
transients 

Table 6. Summary of TDOA and discrimination results. 

45 



THIS PAGE INTENTIONALLY LEFT BLANK 

46 



VI.   CONCLUSIONS 

A.       THESIS SUMMARY 

In this thesis, we have developed and compared two algorithms, namely the 

bispectrum and subspace linear phase detectors. These algorithms were developed for 

the purposes of transient discrimination and TDOA estimation, in order to be used as part 

of a transient tool suite to aid in the estimation of a submarine's position. Chapters III 

and IV of this thesis provide an analysis of these two algorithms. Two performance 

measures were used to evaluate the algorithms, namely the probability of correct TDOA 

(PT) and the probability of correct discrimination (PDi). 

Chapter V discusses the simulations and transients used in the evaluation of the 

algorithms. Of the four transients used, it was found that the whale transient, which is the 

longest transient, gave the worst performance. This may be due to the relatively short 

data observation times used in evaluating the algorithms. It was found that longer 

observation times produced better results for this transient; however, it was impractical to 

run a large number of cases at the longer observation times. 

It was found that both algorithms had advantages and disadvantages as 

summarized in Table 6. In general, it can be said that for TDOA the bispectral linear 

phase detector gave better results at low SNR while the subspace linear phase detector 

worked better at the higher SNR. 

For discrimination, it was found that the bispectral discriminator gave higher PDi 

than the subspace discriminator. However, the Pfa of the bispectral discriminator 

increased at higher SNR while the subspace discriminator gave a constant Pfa for all SNR 

values tested. For discrimination, the advantage of having a constant Pfa is desirable. 

Therefore the subspace discriminator is the best option even although it produced lower 

PDi than the bispectral discriminator. As discussed in Chapter V, there are design trade 

offs between processing speed and performance that need to be made. For the bispectral 

linear phase detector, this trade off is in terms of threshold gain; for the subspace linear 

phase detector, this trade off is in terms of correlation matrix size. 
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B.        FUTURE WORK 

The results of this thesis lead to some interesting topics for future research. These 

topics include: 

0) The effects of the environment on a transient. In the evaluation of the two 

algorithms conducted in this thesis, no work was done to determine the sensitivity of the 

algorithms to changes in transient shape due to the environment. To do this, a 

propagation model must be used. 

(2) The effects of colored noise. In the simulations additive white Gaussian noise 

was used. This is a poor reflection of reality since ocean noise is frequently colored [Ref 

22]. It will therefore be important to see how these algorithms perform when additive 

colored noise is used. 

(3) Operational testing. The algorithms were tested using synthetic data. 

Ultimately, there is a need to test them on real data to obtain a measure of their 

performance and applicability in the field. 
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APPENDIX A PDI AND PFA USING SUBSPACE METHOD 
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Figure 24.      PDi for the CW transient arriving at the first sonabuoy. 
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Figure 25.      PDi for the LFM transient arriving at the first sonabuoy. 
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Figure 26.      PDi for the whale transient arriving at the first sonabuoy. 
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APPENDIX B PDI AND PFA USING BISPECTRUM METHOD 
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Figure 27.      PDi (using bispectral methods) between CW pulse transient, arriving 

at sonabuoy 1 and the CW pulse, exponentially decaying sinusoid, noise, LFM pulse 

and whale transients arriving at sonabuoy 2. Threshold gain values of (a) 1, (b) 2, 

(c) 4, (d) 6 were used. 
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Figure 28.      PDi (using bispectral methods) between LFM pulse transient, arriving 

at sonabuoy 1 and the CW pulse, exponentially decaying sinusoid, noise, LFM pulse 

and whale transients arriving at sonabuoy 2. Threshold gain values of (a) 1, (b) 2, 

(c) 4, (d) 6 were used. 
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Figure 29.      PDi (using bispectral methods) between whale transient, arriving at 

sonabuoy 1 and the CW pulse, exponentially decaying sinusoid, noise, LFM pulse 

and whale transients arriving at sonabuoy 2. Threshold gain values of (a) 1, (b) 2, 

(c) 4, (d) 6 were used. 
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